If ,`A=[[3 ,2],[ 7, 5]]`
and `B=[[6 ,7], [8, 9]]`
, verify that `(A B)^(-1)=B^(-1)A^(-1)`
.
Text Solution
AI Generated Solution
To verify that \((AB)^{-1} = B^{-1}A^{-1}\) for the matrices \(A\) and \(B\) given as:
\[
A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix}
\]
we will follow these steps:
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
Let A=[[3,72,5]] and B=[[6,87,9]]. Verify that (AB)^(-1)=B^(-1)A^(-1)
Find the inverse of each of the matrices given below : If A=[(3,2),(7,5)] and B=[(6,7),(8,9)], " verify that " (AB)^(-1)= B^(-1) A^(-1) .
If A=[[2,-3],[-4,7]] and B=[[8,-2],[3,-1]] ,verify that (AB)^(t)=B^(t)A^(t)
" If "A=[[1,2],[3,4],[5,6]],B=[[2,3,7],[1,0,3]]" verify that "(AB)^(T)=B^(T)A^(T)
If A=[[1,4],[0,5],[6,7]] and B=[[2,3,-1],[1,0,-7]] , verify that (AB)\'=B\'A\'
If A=[[3,2,1] , [-5,0,-6]] and B= [[-4,-5,-2], [3,1,8]] then verify that (A+B)^T=A^T+B^T
If A=[[2,5,6] , [0,1,2]], B =[[6,1] , [0,4] , [5,7]] then verify that (AB)'=B'A'
If A+B=[[2,4],[3,5]] and A-B=[[8,6],[7,1]] . Then find A and B.
If A=[[-1 ,2, 3],[ 5 ,7, 9],[-2 ,1, 1]] and B=[[-4, 1,-5],[ 1, 2,0 ],[1, 3, 1]] , then verify that (i) (A+B)^(prime)=A^(prime)+B^(prime) (ii) (A-B)^(prime)=A^(prime)-B^(prime)
If A=[[3,9,0],[1,8,-2]] and B=[[4,0,2],[7,1,4]] ,find A+B and A-B .