Home
Class 12
MATHS
For the matrix A=[[3 ,1], [7, 5]] , find...

For the matrix `A=[[3 ,1], [7, 5]]` , find `x` and `y` so that `A^2+x I=y Adot`

Text Solution

Verified by Experts

`A=[[3,1],[7,5]]`
`A^2=AA=[[3,1],[7,5]][[3,1],[7,5]]` `=[[16,8],[56,32]]`
Now, `A^2+xI=yA`
`⇒[[16,8],[56,32]]+x[[1,0],[0,1]]=y[[3,1],[7,5]]`
`=>[[16+x,8+0],[56+0,32+x]=[[3y,y],[7y,5y]]`
`16+x=3y,y=8,7y=56,5y=32+x`
Putting `y=8` in `16+x=3y`, we get `x=24−16=8`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[{:(3,1),(7,5):}] . Find 'x' and 'y' so that A^(2)+xI=yA . Hence find A^(-1) .

If A=[{:(3,1),(7,5):}] , find x and y such that A^(2)+xI=yA.

If (2x + 3,y-1) =(3,5) , then find x and y.

5) 3x-4y=-7;5x-2y=0 find x and y

If (2x+y,7)=(5,y-3) then find x and y

For the symmetric matrix, A=[(2,x,4),(5,3,8),(4,y,9)] find the values of 'x' and 'y'

Find x and y i the matrix A= 1/3 [[1,2,2],[2,1,-2],[x,2,y]] satisfythe condition A A\'=A\'A=I_3

Find x and y if the matrix A=(1)/(3)[[1,2,22,1,-2x,2,y]] satisfy the condition AA'=A'A=I_(3)]]

Find the values of x,y,z if the matrix A=[(0,3y,z),(x,y,-z),(x,-y,z)] satisfy the equation A'A=I .

Find X and Y if X+Y =[ [7,0], [2,5]] and X-Y = [[3,0],[2,3]]