Home
Class 12
MATHS
For the matrix A=[[3, 2], [1, 1]] , find...

For the matrix `A=[[3, 2], [1, 1]]` , find the numbers `a` and `b` such that `A^2+a A+b I=O` . Hence, find `A^(-1)` .

Text Solution

Verified by Experts

We have, `A=[[3,1],[2,0]]`
then `|A|=1!=0`
`∴ A^(−1)` exists.
Now `A^2=A.A=[[3,1],[2,0]][[3,1],[2,0]]=[[11,4],[8,3]]`
`=>[[11,4],[8,3]]+a[[3,1],[2,0]]+b[[1,0],[0,1]]=[[0,0],[0,0]]`
`=> [[11+3a+b,4+a],[8+2a,3+a+b]]+[[0,0],[0,0]]`
Equating the corresponding elements, we get
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[[3,21,1]], find the numbers a and b such that A^(2)+aA+bI=O

For the matrix A=[[3,21,1]], find the numbers a and b such that A^(2)+aA+bI=0

For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such that A^(2)+aA+bI=O . Hence , find A^(-1) .

If A = [(3,1),(2,1)] find the value of |a|+|b| such that A^(2)+aA+bl=O. Hece,find A^(-1)

For the matrix A=[[3,17,5]], find x and y sot that A^(2)+xI+yA=0 Hence,Find A^(-1)

if A=[[3,-1-1,2]],B=[[31]],C=[[1-2]] find the matrix X such that AX=3B+2C.

If A=[[2,-1-1,2]] and I is the identity matrix of order 2, then show that A^(2)=4a-3I Hence find A^(-1).

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .