Home
Class 12
MATHS
If A=[[-1,2,0],[-1,1,1],[0,1,0]] , show ...

If `A=[[-1,2,0],[-1,1,1],[0,1,0]]` , show that `A^(-1)=A^2` .

Text Solution

Verified by Experts

`A=[[-1,2,0],[-1,1,1],[0,1,0]]`
here `|A|=1!=0 ` thus `A^(-1)` exists
So,
`A^2=AxxA`
`=>[[-1,2,0],[-1,1,1],[0,1,0]][[-1,2,0],[-1,1,1],[0,1,0]]`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

It A=[(-1,2,0),(-1,1,1),(0,1,0)] show that A^(2)=A^(-1)

If A=[[0,0,1],[0,1,0],[1,0,0]] , show that A^(-1)=A

Find the inverse of each of the matrices given below : If A=[(1,-1,1),(2,-1,0),(1,0,0)], " show that " A^(-1)=A^(2)

If A=[[1,0,1],[0,1,2],[0,0,4]] then show that |3A|=27|A|

If A=[[1,2,3],[0,1,0],[1,1,0]] and B=[[-1,1,0],[0,-1,1],[2,3,4]] show that AB!=BA

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)

Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)-3I)/2

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[[1 ,0 ,1],[0 ,1, 2],[ 0, 0, 4]] , then show that |3A|" "=" "27|A|