RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
If A=[(1, 2,-1),(-1, 1, 2),( 2,-1, 1)] , then det(a d j\ (a d j\ A)) is 14^4 (b) 14^3 (c) 14^2 (d) 14
If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j A=3A^T .
If a d j\ A=[(2, 3),(4,-1)] and a d j\ B=[(1,-2),(-3, 1)] , find a d j\ A Bdot
If A=[1-3 2 0] , write a d j\ A .
If A=[3 1 2-3] , then find |a d j\ A| .
Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1,-2), (2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .
Compute the adjoint of each of the following matrices: [[1, 2, 2],[ 2 ,1 ,2],[ 2, 2, 1]] (ii) [[1, 2, 5],[ 2, 3,1],[-1, 1, 1]] (iii) [[2,-1, 3],[ 4, 2, 5],[ 0, 4,-1]] (iv) [[2, 0,-1],[ 5, 1, 0],[ 1, 1, 3]] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.
If A=[a b c d] , B=[1 0 0 1] , find a d j\ (A B) .
If A=[(1,4),(3,2),(2,5)], B=[(-1,-2),(0,5),(3,1)] , find the matrix D such that A+B-D=0 .
If A=[1 2 0-1 1 2 2-1 1],t h e ndet(A d j(A d jA))= 13 (b) 13^2 (c) 13^4 (d) None of these