Find the adjoint of the
following matrices:
`[[−3,5],[2,4]]`
(ii) `[[a, b], [c, d]]`
Verify that `(a d j\ A)A=|A|I=A(a d j\ A)`
for the above matrices.
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
Find the adjoint of the following matrices : [{:(2,3),(1,4):}]
Find the adjoint of the following matrices : [{:(2,-1),(4,3):}]
Find the adjoint and inverse of each of the following matrices [[2,-1-4,3]]
Compute the adjoint of each of the following matrices: [[1, 2, 2],[ 2 ,1 ,2],[ 2, 2, 1]] (ii) [[1, 2, 5],[ 2, 3,1],[-1, 1, 1]] (iii) [[2,-1, 3],[ 4, 2, 5],[ 0, 4,-1]] (iv) [[2, 0,-1],[ 5, 1, 0],[ 1, 1, 3]] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.
Find the adjoint of each of the matrices [{:(1,2),(3,4):}]
Find the adjoints of the following matrices : (1) {:((1,3),(-2,4)):}" "(2) {:((5,6),(3,4)):} .
Find the adjoint of the following matrices: [1tan alpha sin alpha sin alpha cos alpha]( ii) [1tan alpha/2-tan alpha/21] Verify that (adjA)A=|A|I=A(adjA) for the above matrices.
Find the adjoint of each of the matrices [{:(1,-1,2),(2,3,5),(-2,0,1):}]
Find adjoint of the matrice in [1-1 2 2 3 5-2 0 1]
Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1,-2), (2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .