Home
Class 12
MATHS
If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] ...

If `A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)]` , show that `a d j\ A=3A^T` .

Text Solution

Verified by Experts

`A=[[-1, -2, -2],[ 2, 1, -2], [2 , -2 , 1]]`
`C_{11}=-3` `C_{12}=-6 C_{13}=-6`
`C_{21}=6 C_{12}=-6 C_{13}=-6`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[[-1,-2,-2],[2,1,-2],[2,-2,1]], show that 3adjA=A^T.

Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1,-2), (2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .

If A=[[-1,-2,-2],[2,1,-2],[2,-2,1]] then show that the adjoint of A is 3A^(T) .Find A^(-1)

If A=[(1, 2,-1),(-1, 1, 2),( 2,-1, 1)] , then det(a d j\ (a d j\ A)) is 14^4 (b) 14^3 (c) 14^2 (d) 14

If 3A=[[1,-2,2],[-2,1,2],[-2,-2,-1]] then show that A^(-1)=A'

Show the A=(1)/(3)[(-1,2,-2),(-2,1,2),(2,2,1)] is proper orthogonal matrix.

If A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)] , find (a d j A)^(-1) and (a d j A^(-1)) .

If A=[1-3 2 0] , write a d j\ A .

If a d j\ A=[(2, 3),(4,-1)] and a d j\ B=[(1,-2),(-3, 1)] , find a d j\ A Bdot