Home
Class 12
MATHS
Find the inverse of [1 0 0 0cosalphasina...

Find the inverse of `[1 0 0 0cosalphasinalpha0sinalpha-cosalpha]`

Text Solution

AI Generated Solution

To find the inverse of the matrix \[ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of [[1,2] , [0,3]]

Find the inverse of each of the matrices (if it exists) given in [{:(1,0,0),(0,cosalpha,sinalpha),(0,sinalpha,-cosalpha):}]

Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is

A = [ [ 1 , 0 , 0 ] , [ 0 , cosalpha , sinalpha ] , [ 0 , sinalpha , - cosalpha ] ] , find |A|

A square of side ' a ' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha (0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is: a. y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=a b. y(cosalpha+sinalpha)+x(sinalpha-cosalpha)=a c. y(cosalpha-sinalpha)+x(sinalpha+cosalpha)=a d. y(cosalpha+sinalpha)-x(cosalpha+sinalpha)=a

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha(0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is (a) y(cosalpha+sinalpha)+x(sinalpha-cosalpha)="alpha(b)y(cosalpha+sinalpha)+x(sinalpha+cosalpha)=alpha(c)y(cosalpha+sinalpha)+x(cosalpha-sinalpha)=alpha(d)y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=alpha

Find the inverse of [[1,-1],[0,-3]]

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|