Home
Class 12
MATHS
Given A=[[2, -2],[-4,7]] , compute A^(-1...

Given `A=[[2, -2],[-4,7]]` , compute `A^(-1)` and show that `2A^(-1)=9I-A` .

Text Solution

Verified by Experts

`A=[[2, -2],[-4,7]]`
`|A|=2`
`A^(-1)`=(co-factor matrix of A)`/(abs(A))`
`=1/2 [[7,3],[4,2]]`
`9I-A=[[7,3],[4,2]]`
`=2A^(-1)`
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

Given A=([2,-3-4,7]) compute A^(-1) and show that 2A^(-1)=9I-A

If A=[{:(2,-3),(-4,7):}] , compute A^(-1) and show that 2A^(-1)+A-9I=O .

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

Show that ((2-i)^(2))/(3+4i)=1

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

Given A=[{:(2,-3),(-4,7):}] Assertion (A) : 2A^(-1)=9I-A Reason (R ) : A^(-1)=(1)/(|A|)(adjA)

if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.

Find the adjoint of the matrix A=[[4,-2,-1],[1,1,-1],[-1,2,4]] and show that A(adj A)=|A|I

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0

If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O