Let `F(alpha)=[cosalpha-sinalpha0sinalphacosalpha0 0 0 1]`
and `G(beta)=[cosbeta0sinbeta0 1 0-sinbeta0cosbeta]`
. Show that
`[F(alpha)]^(-1)=F(-alpha)`
(ii) `[G(beta)]^(-1)=G(-beta)`
(iii) `[F(alpha)G(beta)]^(-1)=G(-beta)F(-alpha)`
.
Text Solution
AI Generated Solution
To solve the given problem, we need to show three parts regarding the matrices \( F(\alpha) \) and \( G(\beta) \).
### Given Matrices:
1. \( F(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \)
2. \( G(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \)
### Part (i): Show that \( [F(\alpha)]^{-1} = F(-\alpha) \)
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
Let F(alpha)=[{:(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}] and G(beta)=[{:(cosbeta,0,sinbeta),(0,1,0),(-sinbeta,0,cosbeta):}] . Show that [F(alpha).G(beta)]^(-1)=G(-beta).F(-alpha) .
If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] and G(beta)=[(cosbeta, 0, sinbeta),(0, 1, 0),(-sinbeta, 0, cosbeta)], then [F(alpha)G(beta)]^-1 is equal to (A) F(-alpha)G(-beta) (B) G(-beta)F(-alpha0 (C) F(alpha^-1)G(beta^-1) (D) G(beta^-1)F(alpha^-1)
Statement 1: If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n [F(alpha)]^(-1)=F(-alpha)dot Statement 2: For matrix G(beta)=[[cosbeta,0,sinbeta],[0, 1, 0],[-sinbeta,0,cosbeta]]dot we have [G(beta)]^(-1)=G(-beta)dot
If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=
| alpha alpha1 beta F|=(alpha-P)(beta-alpha)
If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to
If cos alpha+cos beta=0=sin alpha+sinbeta, then cos2alpha+cos 2beta=
If cosalpha+cosbeta=0=sinalpha+sinbeta , then cos2alpha+cos2beta=?