Home
Class 12
MATHS
If A=[[2 ,3] ,[1, 2]] , verify that A^2-...

If `A=[[2 ,3] ,[1, 2]]` , verify that `A^2-4A+I=O` , where `I=[[1, 0], [0, 1]]` and `O=[[0, 0], [0, 0]]` . Hence, find `A^(-1)` .

Text Solution

Verified by Experts

`A=[[2, 3], [1, 2]]`
`A^2=[[2, 3], [1, 2]] [[2, 3], [1, 2]]=[[7, 12], [4, 7]]`
`A^2-4A+I=[[7, 12], [4, 7]]-4[[2, 3], [1, 2]]+[[1,0],[0,1]]=[[0,0],[0,0]]`
Multiplying both sides with `A^(-1)`
`(A^(-1) A)A-4I+A^(-1)=0`
`A^(-1)=4I-A`
`=4[[1,0],[0,1]]-[[2, 3], [1, 2]]`
`=[[2, -3], [-1, 2]]`
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2,-1),(-1,2):}] , verify A^(2)-4A+3I=0 , where I=[{:(1,0),(0,1):}] and O=[{:(0,0),(0,0):}] . Hence find A^(-1) .

If I=[[1,0],[0,1]] and E=[[0,1],[0,0]] prove that (2I+3E)^3=8I+36E

If A=[[3,1-1,2]],I=[[1,00,1]] and O=[[0,00,0]], show that A^(2)-5A+7I=0 Hence find A^(-1)

If A=[[1,0,-32,1,30,1,1]], then verify that A^(2)+A=A(A+I), where I is the identity matrix.

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

If A=[(4,2),(-1,1)] , show that (A-2 I) A-3 I) =0

If [x1][[1,0-2,0]]=O, find x

For the matrix A=[[2,31,2]] show that A^(2)-4A+I=0 Hence find A^(-1)