If `A=[[3, 1],[-1, 2]]`
, show that `A^2-5A+7I=O`
. Hence, find `A^(-1)`
.
Text Solution
AI Generated Solution
To solve the problem, we need to show that \( A^2 - 5A + 7I = O \) for the matrix \( A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \), and then find the inverse of \( A \).
### Step 1: Calculate \( A^2 \)
First, we need to compute \( A^2 \):
\[
A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)
If A=[[3,1-1,2]], show that A^(2)-5A+7I=0
If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .
if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.
If A=[31-12], show that A^(2)-5A+7I_(2)=O
If =[31-12], show that A^(2)-5A+7I_(2)=O
If A=[[2,-33,4]], show the A^(2)-6A+17I=0. Hence find A^(-1)
If A=[{:(1,-1),(2,3):}] , shown that A^(2)-44+5I=o . Hence Find A^(-1) .
If A=[(5,3),(12,7)] , show that A^(2)-12A-I=0 . Hence find A^(-1) .
If A=[[3,1-1,2]],I=[[1,00,1]] and O=[[0,00,0]], show that A^(2)-5A+7I=0 Hence find A^(-1)