If `A=[3-2 4-2]`
, find the value of `lambda`
so that `A^2=lambdaA-2Idot`
Hence, find `A^(-1)`
.
Text Solution
AI Generated Solution
To solve the problem step by step, we will first find \( A^2 \) and then determine the value of \( \lambda \) such that \( A^2 = \lambda A - 2I \). Finally, we will find the inverse of matrix \( A \).
### Step 1: Calculate \( A^2 \)
Given the matrix:
\[
A = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix}
\]
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
A=[[3-24-2]], find the value of lambda so that A^(2)=lambda A-2I
Find the inverse of each of the matrices given below : If A=[(3,2),(4,-2)] , find the value of delta so that A^(2)=deltaA-2I . Hence, find A^(-1) .
If A = [[3, 4],[1, 2]] , find the value of 3|A|
If a=2,find the value of 3-2(a+4)+6(a^(2)+1)
Matrices A and B Satisfy AB = B^(-1) , where B =[{:(2,-2),(-1,0):}] , find the value of lambda for which lambdaA - 2B^(-1) + 1=O , Without finding B^(-1) .
If A=[[2,31,2]] and I=[[1,00,1]], then find lambda,mu so that A^(2)=lambda A+mu I
if ._(1)mu_2 is 1.5, then find the value of lambda_1/lambda_2.
Find the value of lambda so that the line 3x-4y= lambda may touch the circle x^2+y^2-4x-8y-5=0
If veca = (2hati - 4hatj + 5hatk) then find the value of lambda so that lambdaveca may be a unit vector.