Home
Class 12
MATHS
Show that A=[[5, 3], [-1, -2]] satisfies...

Show that `A=[[5, 3], [-1, -2]]` satisfies the equation `x^2-3x-7=0` . Thus, find `A^(-1)`

Text Solution

Verified by Experts

`A=[[5, 3], [-1, -2]]`
`A^2=[[5, 3], [-1, -2]] [[5, 3], [-1, -2]]`
`=[[22, 9], [-3, 1]]`
`3A=[[15, 9],[-3, -6]]`
`7I=[[7,0],[0,7]]`
`A ^2 −3A−7I=[[0,0],[0,0]]` ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

Show that A=[[2,-3],[3,4]] satisfies the equation A^(2)-6A+17=0. Hence find A^(-1)

Show that A=[6576] satisfies the equation x^(2)-12x+1=0. Thus,find A^(-1)

Show that A=[[2,-3],[3,4]] satisfies the equation A^(2)-6A+17=0 .Hence find A^(-1)

Show that A =[{:(5,3),(-1,-2):}] satisfies the equation A^(2)-3A-7I=0 and hence find the value of A^(-1)

Show that A=[2-334] satisfies the equation x^(2)-6x+17=0. Hence,find A^(-1)

show that matrix A = [(3,4),(1,2)] satisfies the equation A^2-5A+2I=0

A=[{:(1,3),(2,1):}] satisfy the equation A^2-kA-5I=0 , then find k and also A^(-1) .

Show that the equation x^(5)-3x-1=0 has a unique root in [1,2] .

Find the values of x satisfying the equation 2sin x=3x^(2)+2x+3

Sum of values x satisfying the equation sin^(-1)(x^(2)-5x+7)=2tan^(-1)1 is