Home
Class 12
MATHS
Show that the matrix, A=[[1, 0,-2],[-2,-...

Show that the matrix, `A=[[1, 0,-2],[-2,-1, 2],[ 3, 4, 1]]` satisfies the equation, `A^3-A^2-3A-I_3=O` . Hence, find `A^(-1)` .

Text Solution

AI Generated Solution

To show that the matrix \( A = \begin{bmatrix} 1 & 0 & -2 \\ -2 & -1 & 2 \\ 3 & 4 & 1 \end{bmatrix} \) satisfies the equation \( A^3 - A^2 - 3A - I_3 = O \), we will perform the following steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 1 & 0 & -2 \\ -2 & -1 & 2 \\ 3 & 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -2 \\ -2 & -1 & 2 \\ 3 & 4 & 1 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

Show that A=[[2,-3],[3,4]] satisfies the equation A^(2)-6A+17=0. Hence find A^(-1)

Show that A=[-8524] satisfies the equation A^(2)+4A-42I=O. Hence,find A^(-1).

Show that A=[[2,-3],[3,4]] satisfies the equation A^(2)-6A+17=0 .Hence find A^(-1)

If A=[[1,3,2],[2,0,-1],[1,2,3]] ,such that A satisfies the equation A^(3)-4A^(2)-3A+kI=O where k-2

Show that the matrix A=[122212221] satisfies the equation A^(2)-4A-5I_(3)=O and hence find A^(-1) .

Find the rank of the matrix [[1,2,3,2],[2,3,5,1],[1,3,4,5]]

Q.3.Find the rank of the matrix [[1,1,-1],[2,-3,4],[3,-2,3]]

Show that A=[53-1-2] satisfies the equation x^(2)-3x-7=0 .Thus,find A^(-1)

Find the Rank of the matrix: [[1,1,1,-1],[1,2,3,4],[3,4,5,2]]

Find x and y i the matrix A= 1/3 [[1,2,2],[2,1,-2],[x,2,y]] satisfythe condition A A\'=A\'A=I_3