Home
Class 12
MATHS
If A=[[2,-1, 1],[-1, 2,-1], [1,-1, 2]] ....

If `A=[[2,-1, 1],[-1, 2,-1], [1,-1, 2]]` . Verify that `A^3-6A^2+9A-4I=O` and hence find `A^(-1)` .

Text Solution

Verified by Experts

Consider, `A^2=[[2,-1, 1],[-1, 2,-1], [1,-1, 2]] [[2,-1, 1],[-1, 2,-1], [1,-1, 2]]`
`=[[6, -5, 5], [-5, 6, -5], [5, -5, 6]]`
`A ^3 =A ^2 A`
`=[[6, -5, 5], [-5, 6, -5], [5, -5, 6]] [[2,-1, 1],[-1, 2,-1], [1,-1, 2]]` ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[(2),(-4),(1)],B=["6 3 -1"] , verify that (AB)'=B'A'

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find value of A^(2)-5A+6I

Find the inverse of each of the matrices given below : If A=[(3,2),(2,1)] , verify that A^(2)-4A-I=O, and "hence " "find "A^(-1) .

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-44+5I=o . Hence Find A^(-1) .

If A=[[1,-2,3],[-4,2,5]] , B=[[1,3],[-1,0],[2,4]] then verify that (AB)'=B'A'

Find the inverse of each of the matrices given below : If A=[(-1,-1),(2,-2)] " show that " A^(2)+3A+4I_(2)=O and " hence find "A^(-1) .