Home
Class 12
MATHS
If A=[[3, -3, 4], [2, -3, 4], [0, -1, 1]...

If `A=[[3, -3, 4], [2, -3, 4], [0, -1, 1]]` , show that `A^(-1)=A^3` .

Text Solution

Verified by Experts

`A=[[3, -3, 4], [2, -3, 4], [0, -1, 1]]`
`|A|=3(-3+4)+3(2)+4(-2)=1`
`A^2=[[3, -3, 4], [2, -3, 4], [0, -1, 1]] [[3, -3, 4], [2, -3, 4], [0, -1, 1]]`
`=[[3, -4, 4], [0, -1, 0], [-2, 2, -3]]`
`A^2.A=[[3, -4, 4], [0, -1, 0], [-2, 2, -3]] [[3, -3, 4], [2, -3, 4], [0, -1, 1]]`
`=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]`
`A^4=I`
`A^(-1)A^4=A^(-1)I` ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

If A=[(3,-3,4),(2,-3,4),(0,-1,1)]2-3 41 then show that A^-1=A^1.

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then show that A^(3)=A^(-1) .

If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]] , then |A^(-1)|=

If A = [[1, 1, 3], [1, 3, -3], [-2, -4, -4]] , then A^(-1) is

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then :

If A=[[1, 2, 3], [1, 3, 4], [3, 4, 3]] , then |A^(-1)|=

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

If A=[{:(2,-2,-4),(-1," "3," "4),(1,-2,-3):}], show that A^(2)=A.