Home
Class 12
MATHS
If A^2=[[-1, 0, 2], [0, 0, 1], [-1, 1, 1...

If `A^2=[[-1, 0, 2], [0, 0, 1], [-1, 1, 1]]` , show that `A^2=A^(-1)` .

Text Solution

Verified by Experts

`|A| = – 1(0 – 1) – 2(0) + 0 = 1 – 0 + 0`
`A^2=[[-1, 0, 2], [0, 0, 1], [-1, 1, 1]]`
`adj A=[[-1, 0, 2], [0, 0, 1], [-1, 1, 1]]`
`A^(-1)=[[-1, 0, 2], [0, 0, 1], [-1, 1, 1]]=A^2`
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

It A=[(-1,2,0),(-1,1,1),(0,1,0)] show that A^(2)=A^(-1)

If A=[[1,0,1],[0,1,2],[0,0,4]] then show that |3A|=27|A|

If A=[[1 ,0 ,1],[0 ,1, 2],[ 0, 0, 4]] , then show that |3A|" "=" "27|A|

If A= [[2,4,-1],[-1,0,2]], B=[[3,4],[-1,2],[2,1]] , Show that (AB)'=B'A' .

If A=[(1,0),(1,1)], B=[(2,0),(1,1)] and C=[(-1,2),(3,1)], show that

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[[1,2,1] , [1,-4,1] , [3,0,-3]], B=[[2,1,1] , [1,-1,0] , [2,1,-1]] then show that AB=6I_3

If A=[[1,3,2],[-1,2,0],[0,-1,1]] , then find a matrix X such that A^(2)-2A-X=0

Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)-3I)/2