Home
Class 12
MATHS
If A=[1 2 2 2 1 2 2 2 1] , find A^(-1) a...

If `A=[1 2 2 2 1 2 2 2 1]` , find `A^(-1)` and prove that `A^2-4A-5I=O` .

Text Solution

Verified by Experts

`A^2=A xx A`
`=[[9, 8, 8], [8, 9, 8], [8, 8, 9]]`
`4A=[[4, 8, 8], [8, 4, 8], [8, 8, 4]]`
`5I=[[5, 0, 0], [0, 5, 0], [0, 0, 5]]`
`A^2-4A-5I=[[0, 0, 0], [0, 0, 0], [0, 0, 0]] `
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,2,22,1,22,2,1]], then prove that A^(2)-4A-5I,=O

If A=[1 1-2 2 1-3 5 4-9] . Find |A| .

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , prove that A^(2)-4A-5I=O and hence, obtain A^(-1) .

Let A=[1 2 2 2 1 2 2 2 1] . Then A^2-4A-5I_3=O b. A^(-1)=1/5(A-4I_3) c. A^3 is not invertible d. A^2 is invertible

If A=[[1,2,2], [2,1,2],[2,2,1]] then A^(2)-5I=

If A^(3)=O , then prove that (I-A)^(-1) =I+A+A^(2) .

If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If A=|(1,2,2),(2,1,2),(2,2,1)|, verifty that A^2-4A-5I-5I=0

If A=[[2, 2, 1], [1, 3, 1], [1, 2, 2]], and A^(-1)+(A-5I)(A-I)^(2)=

If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence find a matrix X such that A^2-5A+4I+X=O .