If `A=[[1, -230] ,[-14, -221]]`
, find `(A^T)^(-1)`
.
Text Solution
AI Generated Solution
To find \((A^T)^{-1}\) for the matrix \(A = \begin{bmatrix} 1 & -230 \\ -14 & -221 \end{bmatrix}\), we will follow these steps:
### Step 1: Find the Transpose of Matrix \(A\)
The transpose of a matrix is obtained by swapping its rows and columns. Thus, the transpose \(A^T\) of matrix \(A\) is given by:
\[
A^T = \begin{bmatrix} 1 & -14 \\ -230 & -221 \end{bmatrix}
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
If A=[(1,-2,3),(0,-1,4),(-2,2,1)] , find (A')^(-1)
If A=[[1,-2,3],[0,-1,4],[-2,2,1]] , then find (A')^(-1)
If A=[[1,-2,3],[0,-1,4],[-2,2,1]], then find |A| .
A = the [[1, -2,30, -5,64,1,7]]
If A=[[3,2],[-1,4]] then find |A^(-1)| = ?
If A=[[1,2,2], [2,1,2],[2,2,1]] then A^(2)-5I=
If A=[[1,-3],[2,-2]] and B=[[1,4],[2,1]] , then find A^(T)*(A+B)
it [[1.1, -22.1, -35.4, -9]]
Let A =[[1,2,2],[2,1,2],[2,2,1]] , then
If A=[[1,1,-22,1,-35,4,-9]], If find the value |A|