Home
Class 12
MATHS
Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0...

Find `A^(-1)` if `A=|(0,1,1),(1,0,1),(1,1,0)|` and show that `A^(-1)=(A^(2)-3I)/2`

Text Solution

Verified by Experts

`A=|(0,1,1),(1,0,1),(1,1,0)|`
`adj A=A=|(0,1,1),(1,0,1),(1,1,0)|^7=[[-1, 1, 1], [1, -1, 1], [1, 1, -1]]` and `|A|=-1(-1)+1.1=2`
`A^(-1)=frac{adj A}{|A|}`
`=1/2 [[-1, 1, 1], [1, -1, 1], [1, 1, -1]]`----(i)
`A^2=[[0, 1, 1], [1, 0, 1], [1, 1, 0]] [[0, 1, 1], [1, 0, 1], [1, 1, 0]]=[[2, 1, 1],[1, 2, 1], [1, 1, 2]]`----(ii)
`frac{A^2-3I}{2}=1/2 {[[2, 1, 1], [1, 2, 1], [1, 1, 2]]-[[3, 0, 0], [0, 3, 0], [0, 0, 3]]}=1/2 |[-1, 1, 1], [1, -1, 1], [1, 1, -1]|=A^(-1)`
Hence, proved.
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

It A=[(-1,2,0),(-1,1,1),(0,1,0)] show that A^(2)=A^(-1)

Find the inverse of each of the matrices given below : If A=[(1,-1,1),(2,-1,0),(1,0,0)], " show that " A^(-1)=A^(2)

If A = [ (0,1,1),(1,0,1),(1,1,0)] then A^(2) - 3I =

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O

If A=[(4,2),(-1,1)] , show that (A-2 I) A-3 I) =0

If A=[[1,0,1],[0,1,2],[0,0,4]] then show that |3A|=27|A|

If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] find 'k' so that A^(2)=5A+kI .

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).