We have,`[[11,-6],[ 6,-4]]=[[1, 3 ],[0 ,2]][[2, 0],[ 3,-2]]`
Using elementary row operation `R2→R2−3R1`
`[[11,-6-3.11],[ 6,-4-3.6]]=[[1, 3-3.1 ],[0 ,2-3.0]][[2, 0],[ 3,-2]]`
⇒`[[11,-39],[ 6,-22]]=[[1, 0 ],[0 ,-6]][[2, 0],[ 3,-2]]`
Since, on using elementary row operation on X=AB, we apply these operations simultaneously on X and on the first matrix(can be used on any one) A of the product AB on RHS.