Home
Class 12
MATHS
Find the inverse using elementary row...

Find the inverse using elementary row transformations: `[3 10 2 7]`

Text Solution

AI Generated Solution

To find the inverse of the matrix \(\begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}\) using elementary row transformations, we will augment the matrix with the identity matrix and perform row operations until we obtain the identity matrix on the left side. The steps are as follows: ### Step 1: Set Up the Augmented Matrix We start with the matrix \(A\) and augment it with the identity matrix: \[ \left[\begin{array}{cc|cc} 3 & 10 & 1 & 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

Find the inverse using elementary row transformations: [2 3 1 2 4 1 3 7 2]

Find the inverse using elementary row transformations: [2-1 3 1 2 4 3 1 1]

Find the inverse using elementary row transformations: [1 1 2 3 1 1 2 3 1]

Find the inverse using elementary row transformations: [1 3-2-3 0 1 2 1 0]

Find the inverse using elementary row transformations: [3 0-1 2 3 0 0 4 1]

Find the inverse using elementary row transformations: [2-1 4 4 0 2 3-2 7]

Find the inverse using elementary row transformations: [1 2 0 2 3-1 1-1 3]

Find the inverse using elementary row transformations: [0 1 2 1 2 3 3 1 1]

Find the inverse using elementary row transformations: [-1 1 2 1 2 3 3 1 1]

Find the inverse using elementary row transformations: [3-3 4 2-3 4 0-1 1]