Home
Class 12
MATHS
Find the inverse using elementary row...

Find the inverse using elementary row transformations: `[2-1 3 1 2 4 3 1 1]`

Text Solution

Verified by Experts

A=`[(2,-1, 3),( 1, 2 ,4),( 3, 1 ,1)]`
`A=IA`
So,
`[(2,-1, 3),( 1, 2 ,4),( 3, 1 ,1)]`=`[(1,0, 0),( 0, 1 ,0),( 0, 0 ,1)]A`
Applying `r1=1/2r1,r2=r2-2r1` and `r3=r3-3r1` we get,
`[(1,-1/2, 3/2),( 0, 5/2 ,5/2),( 0, 5/2 ,-7/2)]`=`[(1/2,0, 0),( -1/5,2 /5 ,0),( -3/2, 0 ,1)]A`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

Find the inverse using elementary row transformations: [2 3 1 2 4 1 3 7 2]

Find the inverse using elementary row transformations: [-1 1 2 1 2 3 3 1 1]

Find the inverse using elementary row transformations: [1 1 2 3 1 1 2 3 1]

Find the inverse using elementary row transformations: [0 1 2 1 2 3 3 1 1]

Find the inverse using elementary row transformations: [2-1 4 4 0 2 3-2 7]

Find the inverse using elementary row transformations: [2 0-1 5 1 0 0 1 3]

Find the inverse using elementary row transformations: [3 10 2 7]

Find the inverse using elementary row transformations: [3-3 4 2-3 4 0-1 1]

Find the inverse using elementary row transformations: [1 3-2-3 0 1 2 1 0]

Find the inverse using elementary row transformations: [3 0-1 2 3 0 0 4 1]