Home
Class 12
MATHS
Find the inverse using elementary row ...

Find the inverse using elementary row transformations: `[[3,0,-1],[ 2,3,0],[ 0 ,4 ,1]]`

Text Solution

Verified by Experts

Given,A=`[[3,0,-1],[ 2,3,0],[ 0 ,4 ,1]]`
Let `A=I_3A`
Applying `r_1->1/3r_1` and `r_2->r_2-2r_1` and `r_2->1/3r_3`
`[[1,0,-1/3],[ 0,1,2/9],[ 0,4,1]]=[[1/3, 0, 0],[ -2/9, 1/3, 0],[0 ,0 ,1]]A`
Applying `r_3->r_3-4r_2` and `r_3->9r_3` and `r_1->r_1+1/3r_3`, also `r_2=r_2-2/9r_3`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

Find the inverse using elementary row transformations: [3 10 2 7]

Find the inverse using elementary row transformations: [1 3-2-3 0 1 2 1 0]

Find the inverse using elementary row transformations: [3-3 4 2-3 4 0-1 1]

Find the inverse using elementary row transformations: [2 0-1 5 1 0 0 1 3]

Find the inverse using elementary row transformations: [1 2 0 2 3-1 1-1 3]

Find the inverse using elementary row transformations: [0 1 2 1 2 3 3 1 1]

Find the inverse using elementary row transformations: [2-1 4 4 0 2 3-2 7]

Find the inverse using elementary row transformations: [2-1 3 1 2 4 3 1 1]

Find the inverse using elementary row transformations: [2 3 1 2 4 1 3 7 2]

Find the inverse using elementary row transformations: [1 1 2 3 1 1 2 3 1]