If `A=[(2, 3),(5,-2)]`
be such that `A^(-1)=k\ A`
, then find the value of `k`
.
Text Solution
AI Generated Solution
To solve for the value of \( k \) in the equation \( A^{-1} = kA \) where \( A = \begin{pmatrix} 2 & 3 \\ 5 & -2 \end{pmatrix} \), we will follow these steps:
### Step 1: Calculate the Determinant of Matrix \( A \)
The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula:
\[
\text{det}(A) = ad - bc
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
If A=[[2,4-1,k]] and A^(2)=0, then find the value of k.
If 2^(k)-2^(k-1)=8 then the value of k^3 is:
If k,k+1,k+3 are in G.P then find the value of k
If 4:(k+3)::5:(k+5) find the value of k
If   ( k-2 ) /( k + 3 ) = 4/9 , then find the value of k
If k , 2k - 1 and 2k + 1 are in AP , then find the value of k
If the point C(k, 4) divides the join of A(2, 6) and B(5, 1) in the ratio 2:3 then find the value of k.
If the point C(k, 4) divides the join of A(2, 6) and B(5, 1) in the ratio 2:3 then find the value of k.
If A=[[2-k,2],[1,3-k]] is a singular matrix,then find the value of 5k-k^(2) .
If 2/3, k , (5k)/8 are n A.P., find the value of k