Find the inverse of the
matrix `[[cos theta,-sintheta],[sintheta,costheta]]`
Text Solution
Verified by Experts
We know that the inverse of the `2 xx2` matrix is the interchange of diagonal off elements and their sign.
thus `A^(-1)=[[cos theta,sintheta],[-sintheta,costheta]]`
as A= `[[cos theta,-sintheta],[sintheta,costheta]]`
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costheta, 0], [0, 0, 1]] is
Show that every real orthogonal matrix is of any one of the forms {:[(costheta,-sintheta),(sintheta,costheta)]:}or{:[(costheta,sintheta),(sintheta,-costheta)]:}
Evaluate the determinants in |{:(costheta,-sintheta),(sintheta,costheta):}|