Home
Class 12
MATHS
Find the inverse of the matrix [[cos t...

Find the inverse of the matrix `[[cos theta,-sintheta],[sintheta,costheta]]`

Text Solution

Verified by Experts

We know that the inverse of the `2 xx2` matrix is the interchange of diagonal off elements and their sign.
thus `A^(-1)=[[cos theta,sintheta],[-sintheta,costheta]]`
as A= `[[cos theta,-sintheta],[sintheta,costheta]]`
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costheta, 0], [0, 0, 1]] is

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

If A=[[costheta, sintheta], [-sintheta, costheta]] , then

Then inverse of the matrix [[1, 0, 0], [0, costheta, sintheta], [0, sintheta, -costheta]] is

If cos theta-4sintheta=1, the sintheta+4costheta=

If A = ((costheta,-sintheta),(sintheta,costheta)) then

Evaluate the determinates abs([-costheta,-sin theta],[sintheta,-costheta])

Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|

Show that every real orthogonal matrix is of any one of the forms {:[(costheta,-sintheta),(sintheta,costheta)]:}or{:[(costheta,sintheta),(sintheta,-costheta)]:}

Evaluate the determinants in |{:(costheta,-sintheta),(sintheta,costheta):}|