Given ,`A=[[1,-3],[ 2, 0]]`
`|A|=6!=0`
A is non singular thus invertible matrix
Let `C_(ij)` be the cofactors of A then
C=`[[0,-2],[3,1]]`
=adj(A)=`[[0,-2],[3,1]]^T`
=`[[0,3],[-2,1]]`
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
Compute the adjoint of each of the following matrices: [[1, 2, 2],[ 2 ,1 ,2],[ 2, 2, 1]] (ii) [[1, 2, 5],[ 2, 3,1],[-1, 1, 1]] (iii) [[2,-1, 3],[ 4, 2, 5],[ 0, 4,-1]] (iv) [[2, 0,-1],[ 5, 1, 0],[ 1, 1, 3]] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.
If A=[a b c d] , B=[1 0 0 1] , find a d j\ (A B) .
If A=[3 1 2-3] , then find |a d j\ A| .
If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j A=3A^T .
If a d j\ A=[(2, 3),(4,-1)] and a d j\ B=[(1,-2),(-3, 1)] , find a d j\ A Bdot
If A is a square matrix such that A(a d j\ A)=[(5, 0, 0),(0, 5, 0),(0, 0, 5)] , then write the value of |a d j\ A| .
If A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)] , find (a d j A)^(-1) and (a d j A^(-1)) .
If A=[(1, 2,-1),(-1, 1, 2),( 2,-1, 1)] , then det(a d j\ (a d j\ A)) is 14^4 (b) 14^3 (c) 14^2 (d) 14
If A is a square matrix of order 3 such that |A|=5 , write the value of |a d j\ A| .
If A=[1 2 0-1 1 2 2-1 1],t h e ndet(A d j(A d jA))= 13 (b) 13^2 (c) 13^4 (d) None of these