If `A=[[3, 1],[ 2,-3]]`
, then find `|a d j\ A|`
.
Text Solution
AI Generated Solution
To find the determinant of the adjoint of matrix \( A \), we can follow these steps:
Given:
\[ A = \begin{bmatrix} 3 & 1 \\ 2 & -3 \end{bmatrix} \]
### Step 1: Calculate the Determinant of Matrix \( A \)
The formula for the determinant of a \( 2 \times 2 \) matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by:
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
"If A" = [{:(1, 2), (1, 3):}] , then find A^(-1) + A . (a) I (b) 2I (c) 3I (d) 4I
If |A|=2 , where A is 2xx2 matrix, find |a d j\ A| .
If A=[1-3 2 0] , write a d j\ A .
If A=[(1, 2,-1),(-1, 1, 2),( 2,-1, 1)] , then det(a d j\ (a d j\ A)) is 14^4 (b) 14^3 (c) 14^2 (d) 14
If a d j\ A=[(2, 3),(4,-1)] and a d j\ B=[(1,-2),(-3, 1)] , find a d j\ A Bdot
If A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)] , find (a d j A)^(-1) and (a d j A^(-1)) .
P(0),P(J)=(1/3)^j , j=1,2,3 then find the value of P(J) when J is even and positive integer
If a= 2b/3, b= 2c/3, and c=2d/3, then find the ratio of b and d:
If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b) 2 (c) 2^3 (d) 2^6
If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j A=3A^T .