If `A`
is an invertible
matrix, then which of the following is not true
`(A^2)^-1=(A^(-1))^2`
(b) `|A^(-1)|=|A|^(-1)`
(c) `(A^T)^(-1)=(A^(-1))^T`
(d) `|A|!=0`
Text Solution
Verified by Experts
`A A^(−1)=I`
`|A A^(−1)|=1`
`|A||A^(−1)|=1`
`|A^(−1)|=|A∣^(−1)`
option (ii) is False.
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
If A is an invertible matrix then which of the following are true? (A) A!=0 (B) |A|!=0 (C) adjA!=0 (D) A^-1=|A|adjA
If A is invertible then which of the following is not true? (A) A^-1=|A|^-1 (B) (A^\')^-1=(A^-1)\' (C) (A^2)^-1=(A^-1)^2 (D) none of these
If A and B are invertible matrices, which of the following statement is not correct. a d j\ A=|A|A^(-1) (b) det(A^(-1))=(detA)^(-1) (c) (A+B)^(-1)=A^(-1)+B^(-1) (d) (A B)^(-1)=B^(-1)A^(-1)
If A is an invertible square matrix,then A^(T) is also invertible and (A^(T))^(-1)=(A^(-1))^(T)
If A is an invertible matrix,then prove that (A^(1))^(-1)=(A^(-1))^(1)
If A is an invertible matrix of order 2 then det (A^(-1)) is equal to (a) det (A) (b) (1)/(det(A))(c)1 (d) 0
If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these
If A is an invertible matrix of order 3 and B is another matrix of the same order as of A, such that |B|=2, A^(T)|A|B=A|B|B^(T). If |AB^(-1)adj(A^(T)B)^(-1)|=K , then the value of 4K is equal to
Let A be an orthogonal square matrix. Statement -1 : A^(-1) is an orthogonal matrix. Statement -2 : (A^(-1))^T=(A^T)^(-1) and (AB)^(-1)=B^(-1)A^(-1)
For an invertible square matrix of order 3 with real entries A^-1=A^2 then det A= (A) 1/3 (B) 3 (C) 0 (D) 1