Home
Class 12
MATHS
If A=[(3, 4),( 2,4)] , B=[(-2,-2),( 0,-1...

If `A=[(3, 4),( 2,4)]` , `B=[(-2,-2),( 0,-1)]` , then `(A+B)^(-1)` (a) is a skew-symmetric matrix (b) `A^(-1)+B^(-1)` (c) does not exist (d) none of these

Text Solution

Verified by Experts

Given,`A=[(3, 4),( 2,4)]` , `B=[(-2,-2),( 0,-1)]`
(A+B)=`[(1,2),( 2,3)]`
`|A+B|=-1!=0`
Hence, inverse of (A+B) exists.
Now, `adj(A+B)=C^T=[(3,(−2)),(​−2,1)​]^T`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A is a skew- symmetric matrix, then trace of A is: 1.) 1 2.) -1 3.) 0 4.)none of these

If A is skew symmetric matrix of order 3 then det A is (A)0 (B)-A (C)A (D)none of these

A is said to be skew-symmetric matrix if A^(T) = a)A b)-A c) A^2 d) A^3

If A is a square matrix,then AA is a (a) skew- symmetric matrix (b) symmetric matrix (c) diagonal matrix (d) none of these

If A is a 3xx3 skew-symmetric matrix,then trace of A is equal to -1 b.1 c.|A| d.none of these

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

If A={:[(a-3,-5),(c+1,b-2)]:} is a skew =-symmetric matrix, then a+b-c = _______ .

If A=[(1,4),(3,2),(2,5)], B=[(-1,-2),(0,5),(3,1)] , find the matrix D such that A+B-D=0 .

If for the matrix A ,\ A^3=I , then A^(-1)= A^2 (b) A^3 (c) A (d) none of these