If `A=[[a, b],[ c ,d]]`
, then `a d j\ A`
is
`[[-d,-b],[-c, a]]`
(b) `[[d,-b],[-c ,a]]`
(c) `[[d, b],[ c, a]]`
(d) `[[d, c],[ b ,a]]`
Text Solution
AI Generated Solution
To find the adjoint of the matrix \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), we will follow the standard procedure for calculating the adjoint of a 2x2 matrix.
### Step-by-Step Solution:
1. **Identify the elements of the matrix**:
The matrix \( A \) is given as:
\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
If A=[[a,b] , [c,d]] and B=[[a',b] , [c',d']] then find the value of A-B
Solve for a,b,c,d when [[b+c,c+a],[7-d,6-c]]=[[9-d,8-d],[ a+b, a+b]]
If a
If A=[[a+i b, c+i d],[-c+i d, a-i b]]a n da^2+b^2+c^2+d^2=1,t h e nA^(-1) is equal to a.[[a+i b,-c+i d],[-c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these
If A={a,b},B={c,d},C={d,e} then {(a,c),(a,d)(a,e),(b,c),(b,d),(b,e)}=
If a, b, c and d are four coplanr points, then prove that [a b c]=[b c d]+[a b d]+[c a d] .
If D=|[a,b,c], [c,a,b], [b,c,a]| and D'=|[b+c, c+a, a+b], [a+b, b+c, c+a], [c+a, a+b, b+c]|, then prove that D' = 2D
If a/b = c/d , then ( ( a +c )/( b + d ) ) is equal to