If `A=[[a,0, 0],[ 0,a,0],[ 0, 0,a]]`
, then the value of `|a d j\ A|`
is
`a^(27)`
(b) `a^9`
(c) `a^6`
(d) `a^2`
Text Solution
AI Generated Solution
To find the value of \(|a \cdot \text{adj} A|\) for the matrix \(A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}\), we will follow these steps:
### Step 1: Calculate the Determinant of Matrix A
The determinant of a diagonal matrix is the product of its diagonal elements. Therefore, we have:
\[
|A| = a \cdot a \cdot a = a^3
\]
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
If A= [[a,b],[c,d]] and I= [[1,0],[0,1]] then A^(2)-(a+d)A=
If A=[[1,0,0],[0,1,1],[0,-2,4]] and 6A^(-1)=A^2+cA+dI . Then c+d is
If A is a square matrix such that A(a d j\ A)=[(5, 0, 0),(0, 5, 0),(0, 0, 5)] , then write the value of |a d j\ A| .
If A=[[0,23,-4]] and kA=[[0,3a2b,24]], then the values of k,a,b, are respectively (a)-6,-12,-18(b)-6,4,9(c)-6,-4,-9(d)-6,12,18
If [[x,1]][[1,0],[2,0]]=0 ,then x equals (A) 0 (B) -2 (C) -1 (D) 2
What is the value of ( 3^0 +4^0 +5^0 ) ? (a) 7 (6) 7 (c) 3 (d)
Find the value of (2^0 + 4^0)/7^0 a)2 b)0 c)9 d) 6/7
Let A=[(0, alpha),(0,0)] and (A+I)^(50) -50A=[(a,b),(c,d)] . Then the value of a+b+c+d is
Find the value of ( 5^0 + 3^0 ) - 2 ( A ) -1 ( B ) 0 ( C ) 1 ( D ) 2
Let A=[(0,alpha),(0,0)] and (A+1)^(50)=50 A=[(a,b),(c,d)] Then the value of a+b+c+d is (A) 2 (B) 1 (C) 4 (D) none of these