For any `2xx2`
matrix, if `A\ (a d j\ A)=[10 0 0 10]`
, then `|A|`
is equal to
(a) 20 (b) 100 (c) 10 (d) 0
Text Solution
AI Generated Solution
To solve the problem, we need to find the determinant of the matrix \( A \) given that \( A \cdot \text{adj}(A) = \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix} \).
### Step-by-step Solution:
1. **Understand the relationship between a matrix and its adjoint:**
The relationship between a matrix \( A \) and its adjoint \( \text{adj}(A) \) is given by the equation:
\[
A \cdot \text{adj}(A) = |A| I
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
For a invertible matrix A if A (adj A) =[(10,0),(0,10)] then |A|=
For a invertible matrix A if A(adjA)=[(10,0),(0,10)] , then |A|=
If 0.13+p^(2)=13, then p equals (a) 0.01 (b) 0.1(c)10(d)100
If A=[[1,0(1)/(2),1]], then A^(100) is equal to
2+3/(10)+5/(100) is equal to 2.305 (b) 2.3 (c) 2.35 (d) 0.235
If [[x,1]][[1,0],[2,0]]=0 ,then x equals (A) 0 (B) -2 (C) -1 (D) 2
(0.1xx0.01xx0.001xx10^(7)) is equal to (1)/(10) (b) (1)/(100)(c)10(d)100
If A=[(2 ,0 ,0),( 0 ,2 ,0),( 0 ,0 ,2)] , then A^5= (a) 5A (b) 10 A (c) 16 A (d) 32 A