Home
Class 12
MATHS
If A=[(2 ,0 ,0),( 0 ,2 ,0),( 0 ,0 ,2)] ,...

If `A=[(2 ,0 ,0),( 0 ,2 ,0),( 0 ,0 ,2)]` , then `A^5=`
(a) `5A` (b) `10 A` (c) `16 A` (d) `32 A`

Text Solution

AI Generated Solution

To find \( A^5 \) for the matrix \( A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \), we can use the property of powers of a diagonal matrix. ### Step 1: Calculate \( A^2 \) \[ A^2 = A \times A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,0,0],[0,2,0],[0,0,2]] ,then A^(5) is

If A=[(0,2),(0,3)] and B =[(2,5),(0,0)] then AB =[(0,0),(0,0)]

If A=[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)] then (A) A^2=I (B) A^2=0 (C) A^3=0 (D) none of these

if A=[[2,5],[0,0]] and B=[[5,0],[-2,0]] then AB=...

If A=[[1,2,3]], B=[(-5,4,0),(0,2,-1),(1,-3,2)] then (A) AB=[(-2),(-1),(4)] (B) AB=[-2,-1,4] (C) AB=[4,-1,2] (D) AB=[(-5,4,0),(0,4,-2),(3,-9,6)]

If A= [[a,b],[c,d]] and I= [[1,0],[0,1]] then A^(2)-(a+d)A=

If A=[(1,0,),(2,0)] and B=[(0,0),(1,12)] then= (A) AB=0, BA=0 (B) AB=0,BA!=0 (C) AB!=0,BA=0 (D) AB!=0,BA!=)

For any 2xx2 matrix, if A\ (a d j\ A)=[10 0 0 10] , then |A| is equal to (a) 20 (b) 100 (c) 10 (d) 0

If [ (1, 2),(-2,-b)]+ [(a,4),(3,2)]=[(5,6),(1,0)] , then a^(2) + b^(2) is equal to

If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then matrix A equals