For non-singular square
matrix `A ,\ B\ a n d\ C`
of the same order `(A B^(-1)C)^(-1)=`
`A^(-1)B C^(-1)`
(b) `C^(-1)B^(-1)A^(-1)`
(c) `C B A^(-1)`
(d) `C^(-1)\ B\ A^(-1)`
Text Solution
Verified by Experts
We have given three non-singular square matrix `A ,\ B\ a n d\ C`
Then we have to find `(A B^(-1)C)^(-1)`
As we have `(AB^(-1)C)^(-1)=C^(-1)(B^(-1))^(-1)A^(-1)`
`implies (AB^(-1)C)^(-1)=C^(-1)BA^(-1)`
Hence correct option is (d).
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
Prove that (a+b+c)/(a^(-1)b^(-1)+b^(-1)c^(-1)+c^(-1)a^(-1))=abc
If B and C are non-singular matrices and O is null matrix,then show that [[A,BC,O]]^(-1)=[[O,C^(-1)B^(-1),-B^(1)AC^(-1)]]
If the two matrices A,B,(A+B) are non-singular (where A and B are of the same order),then (A(A+B)^(-1)B)^(-1) is equal to (A)A+B(B)A^(-1)+B^(-1)(C)(A+B)^(-1)(D)AB
If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n
If B is a non-singular matrix and A is a square matrix,then det (B^(-1)AB) is equal to (A)det(A^(-1))(B)det(B^(-1))(C)det(A)(D)det(B)
If p is the length of perpendicular from the origin onto the plane whose intercepts on the axes area a,b,c then (A) a+b+c=p (B) a^-2+b^-2+c^-2=p^(-2) (C) a^(-1)+b^(-1)+c^(-1)=p^(-1) (D) a^(-1)+b^(-1)+c^(-1)=1