If `A^2-A +I = 0`, then the inverse of A is: (A) `A+I` (B) `A` (C) `A-I` (D) `I-A`
Text Solution
Verified by Experts
We have given
`A^2-A +I = 0`
Then we have to find the inverse of A
Let
`A^2-A +I = 0⟹A−A^2=I `
or `A(I−A)=I`
Therefore `A^(-1) =I-A`
Hence correct option is (d)
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
If A^(2)-A+ I =0 then the inverse of A is - (a) I-A (b) A-I (c) A (d) A+I
If A^(2) - A + I = 0 , then the inverse of the matrix A is
If A^(2)-A+I=0, then the invers of A is A^(-2) b.A+I c.I-A d.A-I
Inverse of (3+4i)/(4-5i)
[veci vec i vec i] = (A) 0 (B) 1 (C) vec i (D) vec k
If A=[(2,-1),(-1,2)] and i is the unit matrix of order 2, then A^2 is equal to (A) 4A-3I (B) 3A-4I (C) A-I (D) A+I
what is the value of i^(-35)+i^7 ? (a) 1 (b) 3 (c) 0 (d) 2
Find the value of i^(73)+i^(74)+i^(75)+i^(76) (A) 0 (B) 2 (C) 2i (D) -2i
"If A" = [{:(1, 2), (1, 3):}] , then find A^(-1) + A . (a) I (b) 2I (c) 3I (d) 4I