Home
Class 12
MATHS
If A and B are invertible matrices, w...

If `A` and `B` are invertible matrices, which of the following statement is not correct. `a d j\ A=|A|A^(-1)` (b) `det(A^(-1))=(detA)^(-1)` (c) `(A+B)^(-1)=A^(-1)+B^(-1)` (d) `(A B)^(-1)=B^(-1)A^(-1)`

Text Solution

AI Generated Solution

To determine which statement is not correct among the given options regarding invertible matrices \( A \) and \( B \), let's analyze each statement step by step. ### Step-by-Step Solution: 1. **Statement (a):** \( \text{adj}\ A = |A| A^{-1} \) - This statement is a known property of matrices. The adjoint (or adjugate) of a matrix \( A \) is equal to the determinant of \( A \) multiplied by the inverse of \( A \). - **Conclusion:** This statement is **correct**. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A is an invertible matrix, then which of the following is not true (A^2)^-1=(A^(-1))^2 (b) |A^(-1)|=|A|^(-1) (c) (A^T)^(-1)=(A^(-1))^T (d) |A|!=0

If A is invertible then which of the following is not true? (A) A^-1=|A|^-1 (B) (A^\')^-1=(A^-1)\' (C) (A^2)^-1=(A^-1)^2 (D) none of these

Knowledge Check

  • If A, B, C are invertible matrices, then (ABC)^(-1) =

    A
    `A^(-1)B^(-1)C^(-1)`
    B
    `C^(-1)A^(-1)B^(-1)`
    C
    `B^(-1)C^(-1)A^(-1)`
    D
    `C^(-1)B^(-1)A^(-1)`
  • Which one of the following is correct? If (1)/(b-c)+(1)/(b-a)=(1)/(a)+(1)/(c), then a, b, c are in

    A
    AP
    B
    HP
    C
    GP
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    A and B are invertible matrices of the same order such that |(AB)^(-1)| =8, If |A|=2, then |B| is

    If A is an invertible matrix of order 3, then which of the following is not true (a) |a d j\ A|=|A|^2 (b) (A^(-1))^(-1)=A (c) If B A=C A , then B!=C , where B and C are square matrices of order 3 (d) (A B)^(-1)=B^(-1)A^(-1) , where B=([b_(i j)])_(3xx3) and |B|!=0

    If A and B are symmetric and commute,then which of the following is/are symmetric? A^(-1)B b.AB^(-1) c.A^(-1)B^(-1) d.none of these

    For non-singular square matrix A ,\ B\ a n d\ C of the same order (A B^(-1)C)^(-1)= A^(-1)B C^(-1) (b) C^(-1)B^(-1)A^(-1) (c) C B A^(-1) (d) C^(-1)\ B\ A^(-1)

    If A;B are invertible matrices of the same order; then show that (AB)^(-1)=B^(-1)A^(-1)

    If A and B are invertible matrices of the same order then (A) Adj(AB)=(adjB)(adjA) (B) (A+B)^-1=A^-1+B^-1 (C) (AB)^-1=B^-1A^-1 (D) none of these