If `A=[(2, 3),( 5,-2)]`
, show that `A^(-1)=1/(19)Adot`
Text Solution
Verified by Experts
We have given that `A=[(2, 3),( 5,-2)]`
Then we have to proof that `A^(-1)=1/(19)A`
As the determinant of `A`, `|A|=(2xx-2)-(5xx3)=-4-15=-19ne0`
Then to inverse we have to find first adjoint of the matrix A .
Then to find adjoint we find the minors of it =`[[-2,5],[ 3,2]]`
And co-factors=`[((-1)^(1+1)(-2), (-1)^(1+2)(5)),( (-1)^(2+1)(3),(-1)^(2+2)(2))]=[(-2,-5),(-3,2)]`
Then `adj A=[(-2,-3),(-5,2)]`
The inverse of the matrix `A` , `A^(-1)=(1/(|A|))adj A`
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
Find the inverse of each of the matrices given below : If A=[(2,3),(5,-2)], " show that " A^(-1)=1/19A.
If A=[235-2], show that A^(-1)=(1)/(19)A
If A=[[3,1-1,2]], show that A^(2)-5A+7I=0
if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.
If A=[[2,4],[-5,-1]] show that: |3A|=9|A|
If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)
If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .
If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .
If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .
If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O