Home
Class 12
MATHS
f(x)={(|x^2-1|)/(x-1),\ \ \ for\ x!=1 2,...

`f(x)={(|x^2-1|)/(x-1),\ \ \ for\ x!=1 2,\ \ \ for\ x=1` at `x=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(2x^(2)-7x+5) for x!=1 and f(x)=-(1)/(3) for x=1 then f'(1)=

f(x)={2(x+1);x =1 then :

f(x)=(x^(n)-1)/(x-1),x!=1 and f(x)=n^(2),x=1 continuous at x=1 then the value of n

If f(x) = (sqrt(x+3)-2)/(x^(3)-1) , x != 1 , is continuous at x = 1, then f(1) is

Let f(x) be a function defined as f(x)={(x^2-1)/(x^2-2|x-1|-1),x!=1 1/2,x=1 Discuss the continuity of the function at x=1.

If f(x) is continuous at x=1 , where f(x)=((x+3x^(2)+5x^(3)+...+(2n-1)x^(n)-n^(2))/(x-1)) , for x !=1 , then f(1)=

If f(x) {:(=(x^(2)-4x+3)/(x^(2)-1)", ..."x!=1 ),( =2", ..."x=1):} then :

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x^(2)-x+1)/(x^(2)+x+1) ,then find f(1+b)