Home
Class 12
MATHS
If f(x)={a x^2+b\ \ \ ,\ \ \ 0lt=x<1 4\ ...

If `f(x)={a x^2+b\ \ \ ,\ \ \ 0lt=x<1 4\ \ \ ,\ \ \ x=1x+3\ \ \ ,\ \ \ 1

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) is defined by f(x)={x^2+a x+b\ \ \ ,\ \ \ 0lt=x 4 f is continuous them determine the value of a and b

The function f(x)={x^2a\ \ \ \ \ ,\ \ \ \ \ 0lt=x<1,\ \ \ \ \a ,\ \ \ \ \ \ \ \ \ \ \ 1lt=x is continuous then find the value of constant term

The function f(x)={(x^2)/a\ \ \ \ ,\ \ \ if\ 0lt=x<1,\ \ \ \a\ \ \ ,\ \ \ if\ 1lt=x is continuous then find the value of constent term

Consider function f(x)={x{x}+1,\ \ \ \ \ \ \ \ \ \ \ \ 0lt=x<1 2-{x},\ \ \ \ 1lt=xlt=2\ \ \ where {x}: fractional part function of x . Statement-1: Rolles Theorem is not applicable to f(x) in [0,2] Statement-2: f(0)\ !=f(2)

If f(x)={:{(ax^(2)-b", for " 0 le x lt1),(2", for " x=1),(x+1", for " 1 lt x le 2):} is continuous at x=1 , then the most suitable values of a, b are

If f(x)= {(|1-4x^2|,; 0 lt= x lt 1), ([x^2-2x],; 1 lt= x lt 2):} , where [.] denotes the greatest integer function, then f(x) is

If : f(x) {:(=ax^(2)-b", ... " 0 le x lt 1 ),(=2", ... "x=1 ),(= x+1", ... " 1 lt x le 2 ) :} is continuous at x= 1 , then the most suitable values of a and b are

Find the values of aa n db so that the function f(x) defined by f(x)={x^2+a x+b,0lt=x<2 3x+2,2lt=xlt=42a x+5b ,4

If f(x)={:{(x", for " 0 le x lt 1),(2", for " x=1),(x+1", for " 1 lt x le 2):} , then f is