Home
Class 12
MATHS
The values of the constants a , ba n dc ...

The values of the constants `a , ba n dc` for which the function `f(x)={(1+a x)^(1//x)b ,x<0((x+c)^(1/3)-1)/((x+1)^(1/2)-1),x >0x=0` may be continuous at `x=0,` are `a=(log)_e(2/3),b=-2/3,c=1` `a="log")e` `(2/3),b2/3,c=-1` `a=(log)_e(2/3),b=2/3,c=1` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of the constants a , ba n dc for which the function f(x)={(1+a x)^(1//x)b ,x 0x=0 may be continuous at x=0, are a=(log)_e(2/3),b=-2/3,c=1 a="log")e (2/3),b2/3,c=-1 a=(log)_e(2/3),b=2/3,c=1 (d) none of these

The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x a)log{(1+x^2 3)}),x!=0 12(log4)^3,x=0 may be continuous at x=0 is 1 (b) 2 (c) 3 (d) none of these

The function f(x)=((3^(x)-1)^(2))/(sin x*ln(1+x)),x!=0, is continuous at x=0, Then the value of f(0) is

The minimum value of (x)/((log)_(e)x) is e(b)1/e(c)1(d) none of these

If the function f(x) defined as f(x) defined as f(x)={3,x=0(1+(ax+bx^(3))/(x^(2)))^((1)/(x)),x>0 is continuous at x=0, then a=0 b.b=e^(3) c.a=1 d.b=(log)_(e)3

If f(x)={(log_(1-3x)(1+3x), x!=0),(=k ,x=0)) is continuous at x=0, then value of k equals (A) -1 (B) 1 (C) 2 (D) -2

If f(x)=f(x)={(sin(a+1)x+sinx)/(x^x c),x<0(sqrt(x+b x^2)-sqrt(x))/(b xsqrt(x)),xgeq0,x-0 is continuous at x=0,t h e n a=-3/2,b=0,c=1/2 (b) a=-3/2,b=1,c=-1/2 a=-3/2,b in R-[0],c=1/2 (d) none of these

lim_(x rarr oo)(x(log x)^(3))/(1+x+x^(2)) equal 0(b)-1(c)1(d) none of these

If b^(2)-4ac=0,a>0 then the domain of the function f(x)=log(ax^(3)+(a+b)x^(2)+(b+c)x+c) is :

A value of C for which the conclusion of Mean Value Theorem holds for the function f(x)""=""(log)_e x on the interval [1, 3] is (1) 2(log)_3e (2) 1/2""(log)_e3 (3) (log)_3e (4) (log)_e3