Home
Class 12
MATHS
If f(x)={(sin(cosx)-cosx)/((pi-2x)^2)\ \...

If `f(x)={(sin(cosx)-cosx)/((pi-2x)^2)\ \ \ ,\ \ \ x!=pi/2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k\ \ \ \ ,\x=pi/2` is continuous at `x=pi/2` , then `k` is equal to (a) 0 (b) `1/2` (c) 1 (d) -1

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={(sin(cos x)-cos x)/((pi-2x)^(2)),x!=(pi)/(2);k,x=(pi)/(2) is continuous at x=(pi)/(2), then k is equal to 0 (b) (1)/(2)(c)1(d)-1

f(x)={(sin(cos x)-cos x)/((pi-2x)^(3)),quad if x+-(pi)/(2) and k,quad if x=(pi)/(2) is continuous at x=(pi)/(2), then k

If f(x)={:{((cot x-cos x)/((pi-2x)^(3))", for " x != (pi)/(2)),(k ", for " x = pi/2):} is continuous at x= pi/2 , where , then k=

int_(-pi//2)^(pi//2)"sin"|x|dx is equal to 1 (b) 2 (c) -1 (d) -2

If f(x) = -4sinx+cosx for x =pi/2 is continuous then

If : f(x) {: ((1-sin x)/(pi-2x)", ... " x != pi//2 ),(=lambda ", ... " x = pi//2):} is continuous at x = pi//2 , then : lambda =

If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) be continuous at x=pi/3 , then value of lamda is (A) -1 (B) 1 (C) 0 (D) 2

If f(x)=(1-sin x)/((pi-2x)^(2)), when x!=(pi)/(2) and f((pi)/(2))=lambda, the f(x) will be continuous function at x=(pi)/(2), where lambda=?( a) (1)/(8)( b ) (1)/(4) (c) (1)/(2) (d) none of these