Home
Class 12
MATHS
Differentiate tan^(-1){x/(1+sqrt(1-x^2))...

Differentiate `tan^(-1){x/(1+sqrt(1-x^2))},\ -1

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to sin^(-1)(2x sqrt(1-x^(2))), if -(1)/(sqrt(2))

Differentiate tan^(-1)(x)/(1+sqrt((1-x^(2))))+{2tan^(-1)sqrt(((1-x)/(1+x)))}sin w.r.t.x

Differentiate tan^(-1){(sqrt(1+x^(2))-1)/(x)} w.r.t. x.

Differentiate tan^(-1){sqrt(1+x^(2))+x},x in R with respect to x:

Differentiate tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))} with respect to cos^(-1)x^(2)

differentiate tan^(-1)((1)/(sqrt(x^(2)-1)))

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

Differentiate tan^(-1)((1)/(1-x+x^(2)))

Differentiate tan^(-1)[(sqrt(1+x^(2))-1)/(x)] with respect to x