Home
Class 12
MATHS
If log\sqrt((x^2+y^2))=tan^(-1)(y/x), sh...

If `log\sqrt((x^2+y^2))=tan^(-1)(y/x),` show that `(dy)/(dx)=(x+y)/(x-y)`

Text Solution

Verified by Experts

Given that, $$ \log \sqrt{x^{2}+y^{2}}=\tan ^{-1}\left(\frac{y}{x}\right) $$ Prove that, $$ \begin{gathered} \frac{d y}{d x}=\frac{x+y}{x-y} \\ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|102 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA|Exercise Solved Examples And Exercises|67 Videos

Similar Questions

Explore conceptually related problems

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)

"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x))," show that "(dy)/(dx)=(x+y)/(x-y)

"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x))," show that "(dy)/(dx)=(x+y)/(x-y)

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)

If log sqrt(x^(2)+y^(2))=tan^(-1)((y)/(x)),then(dy)/(dx) is

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)

if y=sqrt(x^(2)+a^(2)), then show that y(dy)/(dx)=x

If x=log(1+t^(2)),y=t-tan^(-1)t , show that (dy)/(dx)=sqrt(e^(x)-1)/(2)

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))