Home
Class 12
MATHS
If xsqrt(1+y)+ysqrt(1+x)=0, prove that (...

If `xsqrt(1+y)+ysqrt(1+x)=0,` prove that `(dy)/(dx)=-1/((x+1)^2)`

Text Solution

Verified by Experts

\begin{equation} \begin{aligned} &x \sqrt{1+y}+y \sqrt{1+x}=0\\ &x \sqrt{1+y}=-y \sqrt{1+x}\\ &x^{2} \cdot(1+y)=(-y)^{2} \cdot(1+x)\\ &x^{2} \cdot(1+y)=y^{2} \cdot(1+x)\\ &x^{2}+x^{2} \cdot y=y^{2}+y^{2} \cdot x\\ &x^{2}-y^{2}=y^{2} \cdot x-x^{2} \cdot y\\ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|102 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA|Exercise Solved Examples And Exercises|67 Videos

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

xsqrt(1+y)+ysqrt(1+x)=0 , then (dy)/(dx)=

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

If y=sqrt(1+sqrt(1+x^(4))), prove that y(y^(2)-1)(dy)/(dx)=x^(3)

If y=log(x+(1)/(x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))