Home
Class 12
MATHS
If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1...

If `cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a` , prove that `(dy)/(dx)=y/xdot`

Text Solution

Verified by Experts

Given, `\cos ^{-1}(\frac{x^{2}-y^{2}}{x^{2}+y^{2}})=\tan ^{-1} a` $$ \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\cos \left\{\tan ^{-1} a\right\}=\text { constant } $$ Differentiate w.r.t. `x` $$ \Rightarrow \frac{d}{d x}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=0 $$ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|102 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA|Exercise Solved Examples And Exercises|67 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a , prove than (dy)/(dx)=(y)/(x).

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a then prove that (dy)/(dx)=(y)/(x)

if sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=c prove that (dy)/(dx)=(y)/(x)

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))

If tan((x^(2)-y^(2))/(x^(2)+y^(2)))=a then prove that (dy)/(dx)=(y)/(x)

If sin^(-1)((x^2-y^2)/(x^2+y^2)) = tan^(-1)a, then the value of dy/dx is (i)x/y (ii)-x/y (iii)y/x (iv) -y/x

If tan^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a , show that (dy)/(dx)=(x(1-tana))/(y(1+tana)).

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)

if y=tan^(-1)((2x)/(1-x^(2))) then prove that (dy)/(dx)=(2)/(1+x^(2))