Home
Class 12
MATHS
If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2)...

If `x^2+y^2=t-1/t` and `x^4+y^4=t^2+1/(t^2)` , then prove that `(dy)/(dx)=1/(x^3y)`

Text Solution

AI Generated Solution

To solve the problem step-by-step, we start with the given equations: 1. **Given Equations:** \[ x^2 + y^2 = t - \frac{1}{t} \] \[ x^4 + y^4 = t^2 + \frac{1}{t^2} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|102 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA|Exercise Solved Examples And Exercises|67 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=t-1/t andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then prove that (dy)/(dx)=(1)/(x^(3)y).

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

If x+y=t+(1)/(t) and x^(3)+y^(3)=t^(3)+(1)/(t^(3)) then prove that (dy)/(dx)=-(1)/(x^(2))

If x+y=t+(1)/(t) and x^(3)+y^(3)=t^(3)+(1)/(t^(3)) then prove that (dy)/(dx)=-(1)/(x^(2))

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =

If x^(3)+y^(3)=t-(1)/(t) and x^(6)+y^(6)=t^(2)+(1)/(t^(2)) then prove that (d^(2)y)/(dx^(2))=(2y)/(x^(2))

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these

If x^(2)+y^(2) = t +1//t and x^(4) +y^(4) = t^(2) + 1//t^(2) then (dy)/(dx) =______________