Home
Class 12
MATHS
If e^x+e^y=e^(x+y) , prove that (dy)/(dx...

If `e^x+e^y=e^(x+y)` , prove that `(dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))` or, `(dy)/(dx)+e^(y-x)=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

(dy)/(dx)=(x+e^x)/(y+e^y)

If e^x+e^y=e^(x+y) , show that (dy/dx)=e^(x-y)((e^y-1)/(1-e^x))

If e^x+e^y=e^(x+y) then prove that dy/dx =- e^(y-x)

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If y=e^(x+e^(x+e^(x)+cdots*oo)), prove that (dy)/(dx)=(y)/(1-y)

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=