Home
Class 12
MATHS
If cosy=xcos(a+y) , with cosa!=+-1 , pro...

If `cosy=xcos(a+y)` , with `cosa!=+-1` , prove that `(dy)/(dx)=(cos^2(a+y))/(sina)` .

Text Solution

Verified by Experts

We have, `\cos y=x \cos (a+y) \rightarrow(1)`

Differentiate both sides w.r.t. `x` $$ \begin{aligned} &-\sin y \frac{d y}{d x}=\cos (a+y)-x \sin (a+y) \frac{d y}{d x} \\ &\Rightarrow \frac{d y}{d x}=\frac{\cos (a+y)}{x \sin (a+y)-\sin y}=\frac{\cos (a+y)}{\frac{\cos y}{\cos (a+y)} \sin (a+y)-\sin y} \\ &\quad=\frac{\cos ^{2}(a+y)}{\cos y \sin (a+y)-\sin y \cos (a+y)}=\frac{\cos ^{2}(a+y)}{\sin a} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|102 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA|Exercise Solved Examples And Exercises|67 Videos

Similar Questions

Explore conceptually related problems

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos quad yquad =quad xquad cosquad (a+y) with cos quad a!=+-1, prove that (dy)/(dx)=((cos^(2)(a+y))/(sin a))

x(dy)/(dx)=y-xcos^(2)(y/x)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If xcos(a+y)=cosy , then prove that (dy)/(dx)=(cos^(2)(a+y))/(sina) . Hence, show that sina(d^(2)y)/(dx^(2))+sin2(a+y)dy/dx=0 .

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)